5.
$$Q(x_1) = \frac{1}{\sqrt{2\pi}} \int_{x_1}^{\infty} e^{\left(\frac{-x^2}{2}\right)} dx$$
6.
$$Q(x_2) = \frac{1}{\sqrt{2\pi}} \int_{x_2}^{\infty} e^{\left(\frac{-x^2}{2}\right)} dx$$

 $\int_{0}^{\infty} e^{\left(\frac{-t_{c}^{2}}{2\sigma_{c}}\right)_{dt}} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{\left(\frac{-x^{2}}{2}\right)_{dx}} - \frac{1}{\sqrt{2\pi}}$

The following calculation steps are required:*

 $2\sigma_{e} = t_{e}/\sqrt{2 \ln 2}$ 2. $\sigma_c = t_c/2\sqrt{2 \ln 2}$ 3. $x_1 = (b-2\sigma_e)/\sigma_c$ 4. $x_2 = (b+2\sigma_c)/\sigma_c$

 $I_0 = Q(x_1) - Q(x_2)$

9. Percentage overlap = $A_0 \times 100$,

8. $A_0 = I_0 A_c / A_s$

7.

where:

 $\rm A_s$ = Area of the sample peak of interest determined by electronic integration or by the formula $\rm A_s = h_s t_s.$ A_{a} = Area of the contaminant peak, determined in the same manner as A_{a} . b = Distance on the chromatographic chart that separates the maxima of

the two peaks. ${\rm H_{c}}$ = Peak height of the sample compound of interest, measured from the average value of the baseline to the maximum of the curve.

 t_c = Width of sample peak of interest at 1/2 peak height. t = Width of the contaminant peak at 1/2 of peak height.

 $\sigma_{\rm e}$ = Standard deviation of the sample compound of interest elution

curve. σ_{c} = Standard deviation of the contaminant elution curve.

 $Q(x_1)$ = Integral of the normal distribution function from x_1 to infinity.

 $Q(x_2)$ = Integral of the normal distribution function from x_2 to infinity.

 $I_{\alpha} = Overlap integral.$ A_0 = Area overlap fraction.

^{*}In most instances, $Q(x_2)$ is very small and may be neglected.